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ABSTRACT
T9-like keyboards (i.e., 3× 3 layouts) have been commonly
used on small touchscreen devices to mitigate the problem
of tapping tiny keys with imprecise finger touch (e.g., T9
is the default keyboard on Samsung Gear 2). In this paper,
we proposed a computational approach to design optimal T9-
like layouts by considering three key factors: clarity, speed,
and learnability. In particular, we devised a clarity metric to
model the word collisions (i.e., words with identical tapping
sequences), used the Fitts-Digraph model to predict speed,
and introduced a Qwerty-bounded constraint to ensure high
learnability. Founded upon rigorous mathematical optimiza-
tion, our investigation led to Optimal-T9, an optimized T9-
like layout which outperformed the original T9 and other T9-
like layouts. A user study showed that its average input speed
was 17% faster than T9 and 26% faster than a T9-like layout
from literature. Optimal-T9 also drastically reduced the error
rate by 72% over a regular Qwerty keyboard. Subjective rat-
ings were in favor of Optimal-T9: it had the lowest physical,
mental demands, and the best perceived-performance among
all the tested keyboards. Overall, our investigation has led to
a more efficient, and more accurate T9-like layout than the
original T9. Such a layout would immediately benefit both
T9-like keyboard users and small touchscreen device users.

CCS Concepts
•Human-centered computing → Text input; Touch
screens;

Author Keywords
Text entry; Touchscreen; Smartwatches; Pareto optimization.

INTRODUCTION
As computing devices become diversified in the modern Post-
PC computing era, a tremendous amount of challenge for
entering text has arisen, especially on small-sized devices
such as smartwatches. Text entry on small touchscreens is
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notoriously error-prone and inefficient. Since 26 letters are
crammed into a small area, each key occupies a very tiny
space. Also, because a finger is intrinsically an inaccurate
input device (a.k.a., Fat finger problem), it is extremely dif-
ficult to accurately land the input finger on the tiny intended
key when typing on such a keyboard.

To cope with this challenge, many manufacturers and users
have adopted multi-letter key layouts (i.e., each key may cor-
respond to multiple letters), especially on devices with small
touchscreen. For example, the default input method on Sam-
sung Gear 2 is T9 [15]; a number of multi-letter key key-
boards for wearable devices and smartphones are now avail-
able in Google Play Store and Apple App Store, ready for
immediate use; the T9 layout has always been an option for
almost all major virtual keyboard products such as Google
Gboard [13], Microsoft Swiftkey [23], etc.

T9-like layouts possess advantages on small touchscreen de-
vices. Merging tiny keys together enlarges the key size, mak-
ing the key acquisition tasks easier (according to the Fitts’
law [7]). On the other hand, multi-letter key layouts in-
evitably introduce word collisions (i.e., words with identical
tap sequences), which may cause ambiguation and slow users
down.

To address this issue, one option is to rearrange the key po-
sitions to reduce the chance of word collision. However, as
shown in previous research [2, 3, 31, 37], layout optimiza-
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Figure 1. Typing on the Optimal-T9 keyboard on a smartwatch.
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tion is a non-trivial task. A number of factors including the
finger traveling distance between letter pairs and similarity
with Qwerty could all affect the input performance. Addi-
tionally, since the modern touchscreen keyboard adopts the
statistical decoding technique [4, 8, 12, 34, 35], it is necessary
to take into account the decoding principle when rearranging
key positions to strengthen the ability to disambiguate input.
Although there has been a sizable amount of research on key-
board layout optimization, most previous works have focused
on single-letter key layout design; research related to multi-
letter key layout design and optimization has lagged behind.

The primary goal of this research is to investigate principles
and methodologies for optimizing multi-letter key layouts. To
this end, we have proposed a computational approach for de-
signing optimal multi-letter key layouts by considering three
important factors: clarity (i.e., reducing the number of words
with identical tapping sequences), speed, and learnability.
Note that this method is orthogonal to approaches aiming at
improving the decoding ability for small-sized keyboards. In
this work, we focus on the effects of different keyboard lay-
outs on users’ typing performance.

To test the validity of the proposed approach and provide
users with optimized layouts, we applied a rigorous mathe-
matical optimization to search for T9-like (a.k.a., 3× 3) lay-
outs. Our research has led to Optimal-T9, a layout which out-
performed the existing multi-letter key layouts, including T9,
and also had advantages over the de facto standard Qwerty
layout, which is the state-of-the-art text entry method.

The impacts of this research are twofold. The proposed opti-
mization principles and approach will benefit keyboard layout
designers and engineers, while the generated optimized lay-
outs, especially Optimal-T9, will benefit multi-letter key key-
board users as well as those who often type on small touch-
screen keyboards.

RELATED WORK
This work is relevant to keyboard layout optimization re-
search and text entry techniques on small touchscreen de-
vices.

Keyboard Layout Optimization Research
It has been widely known that the traditional Qwerty layout
is sub-optimal for one finger or stylus input. Starting from
at least as early as Getschow and colleagues’ optimization
work [9] for increasing efficiency for the motor impaired, re-
searchers have explored a number of approaches to search
for efficient alternatives, first using simple algorithms [9, 22]
or heuristics [28], and eventually relying upon more rigor-
ous mathematical optimization [2, 3, 37]. As the understand-
ing of keyboard performance has deepened, the optimization
procedure has become more sophisticated, progressing from
improving input speed exclusively [3] to considering multi-
ple factors such as speed, accuracy, and learnability [2, 5,
6]. A number of optimization techniques have also been pro-
posed, including the Metropolis algorithm [37], Pareto multi-
objective optimization [33], and integer programming [21]. A
large portion of previous research examined single-letter key

layout design, whereas our work focuses on multi-letter key
layout design.

Most of the multi-letter key layout research was carried out
on 9 - 12 key keypads [10, 11, 19], prior to the popularity
of touchscreen devices. Gong and Tarasewich’s work [10,
11] investigated the design of an alphabetically constrained
keypad to reduce the number of key strokes needed to
enter words. Their research revealed that alphabetically-
constrained designs were close to unconstrained designs in
terms of performance, and the alphabetically-constrained de-
sign was easier to learn than an unconstrained design. Hwang
and Lee’s work [19] showed that the spatial memory about
the Qwerty keyboard helped the user locate correct keys on
a keypad. They proposed a Qwerty-like 9-key layout, which
had advantages in typing speed and learning over T9. Moving
forward, we advance the multi-letter layout optimization re-
search to virtual touchscreen keyboards powered by the statis-
tical decoding technique. Our approach is also more sophisti-
cated, as it performs Pareto optimization on three objectives.

Text Entry Methods on Small Devices
A number of innovations have been proposed to overcome the
challenges of typing on small virtual keyboards. One com-
mon approach is to expand the keyboard or key size using
various methods. For example, ZoomBoard [29] requires the
user to first zoom into a region containing the desired key to
enlarge the keyboard. DualKey [16] associates each key with
two letters, while tapping the key using different fingers se-
lects different letters. DriftBoard [32] allows a user to pan a
movable keyboard to position the desired key under a fixed
cursor point. SplitBoard [18] supports switching between
the left and right halves of a Qwerty keyboard with a flick
gesture. MacKenzie [24] proposed the scanning ambiguous
keyboard (SAK) with three virtual keys and one SPACE key.
Keys are highlighted in sequence (“scanned”) and users press
a physical key to select an intended key.

Past research has also shown that the modern statistical
decoding technique worked reasonably well on small key-
boards. Gordon et al. [14] revealed that human motor control
adaptability, coupled with modern statistical decoding and er-
ror correction technologies developed for smartphones, can
enable a surprisingly effective typing performance for both
gesture typing and tap typing on a regular Qwerty keyboard
on a watch-sized screen. Inspired by Gordon et al.’s research,
we coupled multi-letter key layout design with the modern
statistical decoding technique and compared the optimized
multi-letter key layout with a regular Qwerty keyboard.

OPTIMIZING MULTI-LETTER KEY LAYOUTS

Objectives
Keyboard layout design is a non-trivial task. A number of
factors have to be carefully considered and balanced. To gain
successful adoption, we believe the following objectives are
essential:

1. Clarity. The layout should minimize the potential word
collisions (i.e., words sharing identical tap sequences).

2. Speed. The layout should improve input efficiency.
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3. Learnability. The layout should be easy-to-learn to facili-
tate adoption.

Clarity
We have devised a metric, called clarity, to quantitatively
measure the extent to which layouts are resistant to the word
collision problem. We first defined the clarity score of word
W on a multi-letter key layout L. Intuitively, such a metric
should satisfy the following properties:

1. If W has a collision with more words, its clarity score
should be lower.

2. If W has a collision with common words (i.e., words with
high frequencies), the clarity score should be relatively low.

Our definition of the clarity score is as follows:

clarity(W ) =
fW

∑N
i=1 fWi

, (1)

where fW is the word frequency of W in a given corpus, Wi
is a word that shares the identical tapping sequence with W
on the layout L, including the word W itself, and N is the
total number of words that share the same tapping sequence.
As shown, the expression for clarity satisfies the two desired
properties.

In fact, we derived the definition of word clarity (Equa-
tion (1)) from the statistical decoding principle [4, 8, 12, 34,
35]. It approximates the probability that the intended word
(W ) appears as the top suggestion if a user provides the per-
fect input signals (e.g., tapping the center of the key for each
letter). The derivation process for clarity is as follows.

The statistical decoding principle can be described as follows:
given a set of tapping sequences on the keyboard S =
{s1,s2,s3, ...,sn}, the decoder is to find word W ∗ in lexicon
L that satisfies:

W ∗ = argmax
W∈L

P(W |S). (2)

From the Bayes’ rule,

P(W |S) = P(S|W )P(W )

P(S)
. (3)

As P(S) is an invariant across words, Equation (2) becomes:

W ∗ = argmax
W∈L

P(S|W )P(W ). (4)

P(W ) is obtained from a language model (LM) and is of-
ten referred to as the language score. P(S|W ) is from a
spatial model (SM) and is often called the spatial score.
P(S|W )P(W ) is referred to as the overall score.

If perfect spatial signals were observed for a given word W ,
the spatial score for the words sharing the same key pressing
sequences with W (i.e., the words W has a collision with) will
be very high and identical. In contrast, the spatial scores for
other words will be very small, close to 0. In this case, the
decoder can only consider words sharing an identical input
sequence with W for decoding. Assuming W has collisions
with N words (including W itself), according to Equation (2)

and Equation (4), the probability of the word W being the top
suggestion becomes:

clarity∗(W ) =
P(W |S)

∑N
i=1 P(Wi|S)

=
P(S|W )P(W )

∑N
i=1 P(S|Wi)P(Wi)

. (5)

Equation (5) essentially normalizes the overall score of W
among words it has a collision with. As explained before,
words sharing the identical tapping sequence always share
the same spatial score (P(S|Wi)), Therefore, Equation (5) be-
comes:

clarity∗(W ) =
P(S|W )P(W )

∑N
i=1 P(S|Wi)P(Wi)

=
P(W )

∑N
i=1 P(Wi)

. (6)

P(W ) is the probability of the word from the language model
only. Without knowing any language context, it is the fre-
quency of the word (or the probability from a unigram lan-
guage model). Equation (6) and Equation (1) are identical.
The derivation ends here.

For any given word W , clarity(W ) is a value between 0 and 1,
indicating how likely the word will avoid word collisions on
an arbitrary keypad configuration. For example, if the input
sequence of W is not shared by any other words, clarity(W )=
f (W )
f (W ) = 1, meaning that it has no collisions at all. In contrast,

if W has a collision with a large number of common words,
clarity(W ) will be small.

To describe the degree to which a layout (L) is free of word
collisions, we define the clarity score of a layout as the sum of
all words’ clarity scores on that keyboard weighted by their
frequencies:

C(L) =
M

∑
j=1

f (Wj)clarity(Wj), (7)

assuming that the corpus has M words in total.

For the regular Qwerty layout, C(L) equates to 1 because
clarity(W ) is 1 for any word W . The more likely a layout
will cause word collisions, the smaller C(L) will become.

Speed
The typing speed metric estimates how fast expert users will
be able to tap type on a keyboard layout. We used the
widely known Fitts-Digraph model [3, 38] for speed predic-
tion, which shows that the average time (t) for inputting a
letter is:

t =
26

∑
i=1

26

∑
j=1

Pi jTi j, (8)

where Pi j is the frequency of the ordered character pair i, j
from 26 Roman characters, and Ti j is the movement time for
the input finger travelling from key i to key j, which is typi-
cally predicted by the Fitts’ law:

Ti j = a+b log2(
Di j

Wi j
+1), (9)

where Di j is the distance from the center of key i to the cen-
ter of key j, and Wi j is the key width. Since each key tap
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action is essentially a 2-dimensional Fitts’ law task, we used
min(Wi j,Hi j) (i.e., the minimum of key width or height) as
Wi j in Equation (9) [26]. Previous research [26] showed that it
yielded a fairly successful fit for 2D Fitts tasks. In the context
of touchscreen typing, Fitts’ law parameters were a = 0.083s
and b = 0.127s, estimated by Zhai et al. [38]. t has the unit of
seconds. t can be converted to input speed (V ) in characters
per minute (CPM): V = 60/t.

Learnability
Learnability is critical to the success of any new layout de-
sign. Perhaps the biggest obstacle of any newly optimized
keyboard is learning the layout. Consequently, although nu-
merous layouts have been proposed, very few are actually
implemented extensively. To achieve superior performance
over existing layouts, users likely have to spend a consider-
able amount of time practicing, and not every user is willing
to make such an effort. For an optimal layout to maintain high
learnability, we devise a strict Qwerty-bounded constraint:
we preserve Qwerty’s alphabetical arrangement to ensure that
users can immediately use this keyboard fluently. Note that
the Qwerty-bounded constraint only works for layouts with 3
rows.

Multi-Objective Optimization
With the two aforementioned objectives and the Qwerty-
bounded constraint, designing a multi-letter key layout is es-
sentially a multi-objective optimization problem: searching
for a layout optimized for both clarity and speed, subject to
the Qwerty-bounded constraint.

As commonly used in layout optimization research, we
adopted the Pareto optimization technique [5, 6] to address
this multi-objective optimization problem. Instead of generat-
ing a single optimized layout, Pareto optimization will lead to
a Pareto front, in which each layout is Pareto optimal, mean-
ing that none of its metric scores can be improved without
compromising the other scores. The designer selects layouts
from the Pareto front after considering the relative weights
between metrics or other factors.

COMPUTATIONALLY DESIGNING 3×3 LAYOUTS

Optimization Procedure
To validate the proposed optimization approach, we applied it
to design optimal 3×3 layouts for a watch-sized multi-letter
key keyboard. As multi-letter key layouts are traditionally
implemented on small touchscreen devices, we investigated
typing performance on the watch platform; a salient goal of
this study is to produce an effective text entry interface option
for users of small electronics. We based our keyboard repre-
sentation on dimensions of the Apple Watch, with a screen
size of 312 pixels ×390 pixels (26.15 mm ×32.69 mm).

The corpus for optimization was taken from the American
National Corpus (ANC) [20] and contains a total of 239,208
unique words with respective frequencies. We carried out the
optimization as follows:

1. All 15,120 possible multi-letter key configurations satis-
fying the Qwerty-bounded constraints were iterated in the

(a) (b)

Figure 2. The Pareto fronts using (a): Fitts’ law and (b): FFitts laws for
speed prediction.

algorithm, and we obtained the greatest and smallest values
in speed and clarity separately.

2. We normalized each candidate layout’s metric scores in a
linear fashion to the 0 - 1 scale.

3. We iterated over all the possible multi-letter key layouts
again, and using the Pareto optimization approach, gener-
ated the Pareto front.

Optimized Keyboard Layouts
Figure 2a illustrates the complete Pareto front formed by 71
Pareto optimal layouts. As shown, the front approximately
forms a curve spanning the top-left and bottom-right corner,
indicating that clarity and speed are conflicting metrics: a
gain in one of them causes a loss in another. The preference
for a particular layout is decided by the relative importance of
speed or clarity. However, because typing preferences largely
depend on the individual user, the trade-offs between clarity
and speed will vary. For instance, a user who tap types very
rapidly but erroneously may favor a layout with higher clarity

(a) Optimal-T9 (b) Closest to 45° line

(c) Maximum clarity score (d) Maximum speed score

Figure 3. Examples of optimized multi-letter key layouts generated us-
ing the proposed computational approach. The letter positions all fol-
lowed their Qwerty alphabetical arrangement.
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score, while a user who types at a slower pace, but accurately,
may wish to choose a layout with a high speed score.

As we are particularly interested in the layouts with the most
balanced typing clarity and speed, we closely examined the
layouts near the center of the Pareto front. We selected the
layout carrying the maximum average of normalized clarity
and speed scores as the optimized layout subject to our spe-
cific Qwerty constraints. We referred to this configuration as
Optimal-T9 (Figure 3a), which lies on the 55.4° line from the
origin. Figure 3b shows the keyboard closest to the 45° line
on the Pareto front, i.e., has the most balanced speed and clar-
ity scores. Figures 3c and 3d display the layouts at two ends
of the front: the one possessing the highest clarity and the one
holding the fastest speed. The clarity scores and estimated in-
put speeds are shown in Table 1.

Optimal-T9 Highest clarity Fastest speed T9 Qwerty-like

Clarity 0.8738 0.9412 0.6519 0.9234 0.9468

CPM - Fitts’ 309.70 284.27 343.14 278.18 270.55
WPM - Fitts’ 61.94 56.85 68.63 55.64 54.11

CPM - FFitts 281.50 257.83 313.31 252.40 244.90
WPM - FFitts 56.3 51.57 62.66 50.48 48.98

Table 1. The clarity and speed (in CPM and WPM) of different 3×3 lay-
outs. Note that the highest clarity layout possesses a lower clarity score
than the Qwerty-like keyboard. This is because both highest clarity and
fastest speed refer to keyboards with best respective metric scores within
the scope of our optimization with the Qwerty-bounded constraint.

Although Fitts’ law has been widely used in layout optimiza-
tion, recent research confirmed that FFitts law [1] has better
capability for modeling finger touch target selection. We re-
placed the Fitts’ law in the Fitts-Digraph model with FFitts
law, and re-ran the optimization procedure to verify the op-
timization results. Using FFitts law in lieu of Fitts’ law pro-
duced little difference in the Pareto front, with the biggest
disparity being that the new Pareto front contained 74 Pareto
optimal layouts instead of 71 produced with the Fitts’ law
application. As shown in Figure 2b, the new Pareto front
shape closely resembles the one with Fitts’ law. Additionally,
the layouts with the highest clarity score, highest speed, and
maximum average of clarity and speed remained unchanged.
However, the respective estimated input speeds generally var-
ied between the two models, as shown in Table 1. Though
speeds predicted using the FFitts law were lower than those
predicted using Fitts’ law, FFitts law predictions more accu-
rately reflected the empirical data, as shown later in the user
study.

EVALUATING THE OPTIMIZED MULTI-LETTER LAYOUT
Our investigation up to this point was theoretical. To empiri-
cally validate the proposed optimization approach and under-
stand to what degree the optimized layout would improve typ-
ing performance in realistic text entry tasks, we conducted a
user study to evaluate the performance of the optimized multi-
letter key layout.

Experiment Setup
Tasks
The study used watch-size keyboards to transcribe phrases in
which the transcribed phrase was shown on the screen. Par-

ticipants were seated in front of a desk, and were instructed
to type as fast and as natural as possible. Participants were
instructed to use the suggestion bar freely. As shown in Fig-
ure 4, users pressed the green button to proceed to the next
trial.

The phrases were randomly selected from a subset of the
Mackenzie and Soukoreff phrase set [27], using the selection
procedure proposed by [36]. The same set of phrases was
used for all the participants and the order of the phrases was
randomized for each participant.

Design
We adopted a within-subject design in which the independent
variable was the keyboard type with four levels. In addition
to the Optimal-T9 layout (Figure 4a), we included the follow-
ing layouts as baselines: the traditional ABC-T9 layout (Fig-
ure 4b), the Qwerty-like layout [19] (Figure 4c) which was
adapted from Qwerty, and the standard Qwerty layout (Fig-
ure 4d). We included the Qwerty-like layout because Hwang
et al. [19] showed that it outperformed ABC-T9 in their study.

All the keyboards were built based on the statistical decoding
principle with the same n-gram language model, which has
a 60K lexicon and includes unigrams, bigrams and trigrams.
All keyboards also used the same predictive model. Since our
goal was to evaluate the performance of keyboard layouts, we
kept the number of suggestions unchanged across all the con-
ditions. Each keyboard displayed three suggested words on
the suggestion bar, which is the number of suggestions com-
monly used on touchscreen keyboards (e.g., Google GBoard,
Microsoft SwiftKey, etc.).

(a) Optimal-T9 (b) T9

(c) Qwerty-like (d) Qwerty

Figure 4. Keyboard layouts used in the evaluation experiments.
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The orders of the four keyboards were balanced across par-
ticipants. Before the formal study, participants performed a
practice session with three phrases. Each task consisted of
5 blocks, and each block contained 6 phrases. Participants
were allowed to take a short break after the completion of
each block. In total, the study collected: 4 keyboards × 5
blocks × 6 phrases × 20 participants = 2400 phrases.

Participants and Apparatus
20 subjects (5 female) aged from 23 to 34 (M = 27.1,SD =
3.02) participated in the study. Participants were asked to
rate their familiarity with the Qwerty layout and touchscreen
typing before the study. The median familiarity with Qwerty
layout (1: not familiar; 5: very familiar) was 4.5. The median
familiarity with touchscreen typing (1: not familiar; 5: very
familiar) was 4. Participants were instructed to use their pre-
ferred input finger throughout the study: 15 participants used
the index finger, and 5 participants used one thumb.

An LG Nexus 5X device was used to simulate the watch-
size screen. The simulated watch-size screen was 26.15 mm
×32.69 mm, identical to the screen dimensions of the Apple
Watch. The keyboard size was 26.15 mm ×20.18 mm.

Results
Speed
We calculated the text entry speed following Mackenzie [25]:

WPM =
|T −1|

S
×60× 1

5
, (10)

where T is the target string and S is the elapsed time in sec-
onds from the first to the last touch in the sentence. Figure 5
shows the average text entry speed for each keyboard. As
shown, Optimal-T9 was the fastest among all the multi-letter
key layouts. It was 16.6% faster than T9, and 26.2% faster
than the Qwerty-like layout.

Figure 5. Means (95% confidence interval) of input speed by keyboard.

There was a main effect of keyboard type on the average
text entry speed (F3,57 = 8.408, p < 0.001). Pairwise t-
tests showed that the differences were significant between
Optimal-T9 vs. Qwerty-like (p = 0.02), Optimal-T9 vs. T9
(p = 0.0396), Qwerty vs. Qwerty-like (p < 0.001), and Qw-
erty vs. T9 (p = 0.011).

Error Rate
We define word error rate as:

r =
MWD(S,P)

LengthInWords(P)
×100%, (11)

where MWD(S,P) is the minimum word-level editing dis-
tance between transcribed phrase S and the target phrase P,
and LengthInWords(P) is the number of words in P.

As shown in Figure 6, the average word error rate was 1.95%
(SD = 1.69%) for Optimal-T9, 2.58% (SD = 2.15%) for T9,
2.46% (SD = 2.26%) for Qwerty-like, and 6.98% (SD =
15.63%) for Qwerty. ANOVA did not show a main effect
of keyboard type on the word error rate (F3,57 = 1.863, p =
0.146).

Figure 6. Means (95% confidence interval) of error rate by keyboard.

Learnability
To understand the general learning curve, and the learnabil-
ity of each specific keyboard type, we analyzed how text
entry speeds changed over time in Figure 7. There was a
main effect of block number on the average speed of the
tested keyboards at large (F4,76 = 3.54, p = 0.0105). Pair-
wise t-tests with Bonferroni adjustments showed that the dif-
ferences were significant between the first block vs. the third
block (p = 0.0037) and the first block vs. the fourth block
(p = 0.0314). For individual keyboards, no significant differ-
ences were observed between any two blocks for Optimal-T9,
Qwerty, or Qwerty-like. Pairwise t-tests with Bonferroni ad-
justments indicated a significant difference between the first
block vs. the fourth block (p = 0.024) on the T9 layout.

Figure 7. Means (95% confidence interval) of text entry speed by key-
board and block.

Backspace Usage
We measured the backspace usage by dividing the number
of backspace key presses in one trial by the total number of
words in the target phrase. The mean (SD) backspace us-
age was 0.33 (0.24) for Optimal-T9, 0.32 (0.33) for T9, 0.29
(0.22) for Qwerty-like, and 0.65 (0.36) for Qwerty. ANOVA
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(a) (b)

Figure 8. (a): Means (SD) of the NASA-TLX measures in (1-20) scale. 1 is the most positive rating, and 20 is the negative rating. (b): Means (SD) of the
overall preference for each keyboard in (1-5) scale. 1 is the most negative rating, and 5 is the most positive rating.

showed a main effect of keyboard type on the backspace us-
age (F3,57 = 10.66, p < 0.001). Pairwise t-tests with Bonfer-
roni adjustments showed that the difference was significant
between Qwerty and the other three keyboards (all p < 0.05).

Subjective Ratings
After the completion of each keyboard type, participants
were asked to rate their perceived task load with questions in
NASA-TLX [17] in a continuous numeric (1-20) scale. The
results are shown in Figure 8a. No significant differences
were observed on mental demand, temporal demand, and
performance. ANOVA indicated a main effect of keyboard
type on the other three measures: physical demand (F3,57 =
5.745, p = 0.00166), effort (F3,57 = 5.049, p = 0.00359) and
frustration (F3,57 = 3.908, p = 0.0131). Pairwise t-tests with
Bonferroni adjustments revealed that the differences were
significant between Optimal-T9 vs. Qwerty in terms of phys-
ical demand (p = 0.027), and Optimal-T9 vs. Qwerty-like in
terms of effort (p = 0.0016) and frustration (p = 0.013). No
significance was observed between other pairs.

At the end of the study, participants were also asked to give
an overall preference of each keyboard on the scale of 1 (very
dislike) to 5 (very like). As shown in Figure 8b, the median
rating for Optimal-T9 (4) was the highest.

Discussion
Overall, Optimal-T9 exhibited better performance than the
other 3×3 layouts. Its mean input speed was 17% faster than
T9 and 26% faster than the Qwerty-like layout. The differ-
ences in typing speeds were statistically significant (p< 0.05)
between Optimal-T9 vs. Qwerty-like and Optimal-T9 vs. T9.
Likewise, the mean error rate of Optimal-T9 was also the low-
est (1.94%), while the error rates for T9 and Qwerty-like were
all above 2.4%.

Optimal-T9 has an edge over a standard Qwerty layout: al-
though their speeds were similar, the error rate on Optimal-T9
was 72% lower and this difference between them approached
significance (p = 0.0803).

Subjective ratings revealed substantial advantages of using
Optimal-T9. Its mean rating was the best among all the cat-

egories, including the overall rating. Moreover, users felt
the most relaxed physically and mentally when typing on
Optimal-T9. Users also felt the least frustrated and exerted
the least effort on Optimal-T9 compared to when typing on
the other layouts.

The per-block typing speed exhibited a fast learning curve for
typing on watch-size devices for Optimal-T9. We found that
Optimal-T9 maintained a consistently high typing speed rel-
ative to the other layouts across all blocks. No significant dif-
ferences were observed between any two blocks on Optimal-
T9, which suggested minimal adaption in typing behavior.
This finding confirmed our assumption that the Optimal-T9
layout, while preserving the Qwerty character arrangements,
has a high user adaptability and makes for a readily usable
keyboard.

LIMITATIONS
Though this work has successfully produced a novel keyboard
that surpasses traditional T9 among multi-letter key layouts
and shows an edge over Qwerty, many questions beyond the
scope of this work merit further research. Optimal-T9 is the
layout with highest average of clarity and speed. Depending
on the preference, some users may prefer clarity over speed
or vice-verse. It is interesting to investigate how the weights
of clarity and speed differ across users, or whether an optimal
weight exists for the general population. The current work
focuses on layout optimization only.

Previous research [30, 31] has also shown that the number of
suggestions could affect the layout performance because extra
visual attention or cognitive effort is needed when searching
through a candidate word list. The ultimate keyboard design
needs to take into consideration this factor. It is also necessary
to conduct larger and more thorough empirical investigations
of multidimensional optimization spanning more objectives
such as finger or stylus input strategies. More specifically,
research is warranted for broader investigation of multi-letter
key layout optimization beyond strictly Qwerty-bounded lay-
outs. It may be computationally feasible to model expertise
on Qwerty-similar layouts for optimization and lesson the
layout learnability constraint of this study.
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CONCLUSIONS
The contributions of our research are of both theoretical and
practical significance. At the theoretical front, we have pro-
posed a computational approach for designing optimal multi-
letter key layouts. Our approach takes into consideration 3
salient factors: clarity, speed and learnability. In particu-
lar, we derived a clarity metric to quantify a candidate lay-
out’s ability to resolve word collisions, used the Fitts-Digraph
model to predict input speed, and introduced the Qwerty-
bounded constraint to ensure high layout learnability.

At the practical front, this work has led to an ergonomic and
promising interface option that can immediately benefit users
of portable electronics. Our research produced Optimal-T9, a
3× 3 layout optimized for the three aforementioned factors.
A user study demonstrated that Optimal-T9 improved tap typ-
ing performance over existing 3× 3 layouts, and possessed
advantages over the standard Qwerty layout. Our investiga-
tion confirmed that the proposed computational approach is
both effective and promising in designing a multi-letter key
layout, and led to Optimal-T9, a layout that can immediately
benefit multi-letter key layout users and small touchscreen de-
vice users.
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